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J. Phys. A: Math. Gen., 13 (1980) 453-467. Printed in Great Britain 

Exact Bose expansion for general spin 

I Goldhirsch 
Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel 

Received 16 May 1979 

Abstract. An exact Bose expansion for general spin S is presented. It is a generalisation of a 
previously derived expansion for S = 1. The analysis of the resulting Bose-Hilbert space 
yields a new understanding of existing Bose expansions and of the meaning of the 
spin-boson transformations in general. The Bloch sum rule for spin systems is proven 
rigorously for any value of S and every temperature. It is argued that phase transitions in 
quantum spin systems can be regarded as generalised Bose condensation processes. Possible 
applications to quantum spin systems are mentioned. 

1. Introduction 

In a previous work (Goldhirsch et a1 1979) it was shown how one can represent 
quantum spin operators in terms of Bose operators for the case S = 4. It was also shown 
how the problem of unphysical states appearing in other bosonisation schemes could be 
avoided, and some properties of quantum spin systems were analysed using the 
formalism developed. In this work it is shown how these results can be generalised to 
any spin S ,  thus yielding a unified picture of the process of Bose expansion of spin 
operators and its meaning. 

The Bloch sum rule is shown to follow trivially from the structure of the Bose- 
Hilbert space. The formalism is demonstrated for the S = 1 case. The high-S limit is 
considered and a way to make a 1/S expansion is shown. The Bose expansion can be 
used in order to write down the partition function of any quantum spin system in terms 
of a path integral. The path integrals corresponding to quantum spin models are 
discussed briefly from the point of view of the renormalisation group. The role played 
by an invariant of the theory, which is a function of the number operator, is shown to be 
similar to the role of the total particle number in a usual Bose system, when the phase 
transition is considered. As a result one can argue that phase transitions in quantum 
spin systems can be described as generalised Bose condensation processes. 

2. The spin-boson transformation 

In this section the bosonisation of spin operators is defined. First a few definitions are 
necessary. 

Let S + ,  S - ,  S' be the usual spin angular momentum operators, satisfying the spin 
commutation relations 

[S', s-1= 2s' [S', S'] = s' [S",  s-] = -s- (1) 
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and the relation 

s' = ( S - ) +  (2) 

(a dagger means Hermitian conjugate). 

representation corresponding to spin S) so that 
In addition, we assume that we are dealing with spin S (or, more rigorously, with a 

$(s+S- + S-S') + ( S y  = S(S + 1). ( 3 )  

The operators S', S - ,  S" are considered as ( 2 s  + 1) X ( 2 s  + 1) matrices which act on a 
(2s + 1)-dimensional linear space, henceforth called the spin space. 

We would like to find a set of three operators s"', s"-, s"' defined in a Bose-Hilbert 
space, which have the properties (l), (2), (3). These operators will be called the 
bosonised spin operators. Let the boson operators be denoted by B, Bt .  Their 
commutation relations are [B, B'] = 1. The number operator is fi =BtB. We choose 
as a basis for the Hilbert space of the bosons the set of normalised eigenstates of fi. An 
eigenstate of fi with eigenvalue n will be denoted by the ket In). Let F ( x )  be any 
function defined at least on the set of non-negative integers. Then one defines a 
function of the operator fi, F ( f i ) ,  through its matrix elements: 

(n lF( f i ) ln f )  = 6,,,F(n). (4) 

In particular, we shall define 

where { y }  means 'the fractional part of y ' ,  e.g. (1.2) = 0.2, (-0.2) = 0.8 
Now we are in a position to define s"', &, s"': 

(6) 
S(S + 1) -f(A)(f(f i)  + 1) s"+ = B' i f i+ l  

s"' = f(fi). (8) 

The matrix elements of s"', g-, s"" in the Bose space are easily found: 

(n'ls"+ln) = 6,,,,+1[S(S+ 1) - f ( n ) ( f ( n )  + 1 ) Y  
(n'lS-ln) = 61+,,,,[S(S + 1) - f ( n ' ) ( f ( n ' ) +  1 ) y  

(nfls""in) = 6,,,,f(n). . 

It should be noted that the square root is always a real number since S ( S +  1) - 
f ( n ) ( f ( n )  + 1) 2 0 for any integer n, as can be seen from (5). 

It is easy to check directly that demands (1), (2) and (3) are satisfied by definitions 
(6), (7) and (8), using the matrix elements (9), (10) and (11). The same result also 
follows from the analysis in the following section. 
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3. The structure of the bosonised spin operators 

We shall divide the basis set of the Bose-Hilbert space IO), jl), 12), . . . into subsets 
defined as 

U, ={In);  (2s  + 1)m s n < (2s + l ) (m + I)} (12) 

where the m's are non-rlegative integers. 
The subsets are mutually exclusive and their union is a complete basis for the 

Bose-Hilbert space. Each of the subsets spans a (2s + 1)-dimensional subspace of the 
Bose-Hilbert space-H,. We claim that each H, is closed under the action of 
f?, $-, 3'. Moreover, the action of s"+, &, s" inside H,,, is isomorphic to the action of 
S + ,  S - ,  S' in the spin space. 

Let l-S)sl-S + l)s. . . IS), be a basis for the (2s + 1)-dimensional spin space where 
the number inside the ket is taken as an eigenvalue of S'. We define a one-to-one 
correspondence between H, and the spin space; to every element I-S + r ) ,  (0 s r s 2s) 
of the spin space we assign a corresponding element in the H, space, l(2S + 1)m + r ) .  In 
order to prove the isomorphism we have to check the equality of corresponding matrix 
elements. 

From equations (5) and (8) it follows that 

by its definition. Thus 

,(-S+rlS'I-S+r),= ( ( 2 ~ +  1)m + r l s " J ( 2 ~ +  ~ ) m + r ) ,  (16) 

which proves the desired equality of matrix ele.ments for S' and 3'. Now we turn to Sc 
and ?. 

From (5) and ( 6 )  it follows that 

S"+J(~S + 1)m + r )  = [ S ( S  + 1) - ( r  - S ) ( r  - s + I )]1'21(2~ + 1)m + r + I) (17) 

where we use 

In) = In + 1). 
1 

(1 + Ay2 Bt  

In the spin space it is well known that 

s+(-s + r ) ,  = [ S ( S  + 1) - (-s + r ) ( - ~  + r + I)]"~\-s + r + I ) ~ .  (1 8) 

The desired equality of matrix elements follows trivially from (18) and (17). The proof 
for s'- and S -  is similar to that for s"' and S + .  

In conclusion, the matrices representing S + ,  S - ,  S' in the spin space are equal to the 
matrices representing s"', s"-, s"' in each of the H, spaces, provided an appropriate 
correspondence is chosen between the bases. Thus the matrices representing s"', s"-, s"' 
in the Bose space can be written, as shown in figure 1, as block matrices. Each block is a 
(2s + 1) x (2s + 1) dimensional matrix in spin space by repeating it infinitely many 
times. 
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Figure 1. Structure of the bosonised spin operators. Each block is equal to the original 
matrix in spin space. a denotes either f or z .  

Several conclusions can be drawn from this analysis. 
( a )  The requirements (l), ( 2 )  and (3) are satisfied because of the isomorphism. 
( b )  There is no problem of unphysical states. In usual Bose expansions (Holstein 

and Primakoff 1940, Dyson 1956) of spin operators such a problem must appear since 
the Bose space is infinite dimensional, whereas the spin space is (2s + 1)-dimensional. 
Thus a one-to-one correspondence between the two is impossible. The usual solution is 
to define a transformation between the spin space and a subspace of the Bose space, 
which is always the subspace defined here as Ho (or m = 0). All other states, namely 
{In); n a 2s + 1) are considered unphysical and are projected out. Here we see that 
Holstein and Primakoff (1940) worked just in the first block. Our solution is a 
multivalued transformation between the spin space and the Bose space, which assigns to 
each state in the spin space an infinity of states in the Bose space. No unphysical states 
appear in this approach. 

( c )  A new symmetry has emerged in the process of bosonisation, namely the 
symmetry among the blocks. This symmetry will be shown to be connected to an 
invariant of the theory. 

4. A theorem on functions of the number operator N 

In this section we prove an expansion theorem for functions of the number operator fi 
in a Bose space. A similar proof is given in § 1 of Goldhirsch et a1 (1979), and is 
repeated here for sake of completeness. 

According to definition (4), every functionf(x), even if it is defined only on the set of 
non-negative integers, has a corresponding operator f(A) defined through its matrix 
elements. In this section we prove that every function f(fi) of the number operator fi 
can be expanded as 

m 

f(A) = 1 bnBtnB" 
n = O  

where the bks are a set of numbers which depend on the values f(n) for n as 
non-negative integers. The expansion (19) is not a Taylor-like expansion of f(R) 
(which can be even non-analytic). It just means that the matrix elements of both sides of 
the equality (19) are equal. In other words, 

m 

f ( m )  = 1 bn(mlB'"B"lm) (20) 
n = O  

for every non-negative integer m. 
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Since B" lm)  = 0 for n > m it follows that (20) is equivalent to 
m 

f ( m )  = 1 b,(mlBt"B"~m). 
n =O 

Using the relation [B, B'] = 1 one can prove by induction in n that 

B+"B" =$($-I). . . (A-n + I ) .  

Inserting (22) into (21) one gets 
m 

f ( m ) =  1 b,m(m-1) . . . (  m - n + l )  
,=n 

or 

Equation (23) is therefore equivalent to equation (19). The b,'s should satisfy (23) for 
every non-negative integer m : 

l !  l !  
l !  O! f(1) = -bo + -- bl 

2! 2! 2! 
2! l! O! 

3! 3!  3! 3! 
3! 2! l !  O! 

f(2) =-bo+-bi+-b2 

f(3) =-bo+-bl +-bZ+-b3, 

etc. We see that b1 is expressed through bo, b2 through bo and bl ,  and so on. Thus we 
can calculate successively all the coefficients b,. Moreover, a closed expression for the 
b,'s can be found. To do this we define a set of functions Jv(x), where N are 
non-negative integers: 

One can see that fN(l) = f ( N )  and fN(0) = bNN! From (25) we have 
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By successive integrations, taking into account that from (25) it follows that fO(y) = fO( 1) 
and hence ho(y)  = h o ( l ) ,  we derive 

bib) = ( X  - l ) h o ( l )  + hi (1)  

hZ(X) =+(x - l ) 'ho( l )  + ( X  - l ) h l ( l )  + hz(1) (30) 
1 1 
3! 2 !  

h 3 ( x ) = - ( x -  l)3hO(l)+-(x - l ) ' h l ( l ) + ( x  - l ) h z ( l ) + h 3 ( 1 ) .  

From (30) one can see that 

Equation (31) is simply proven by mathematical induction. Recalling the definition of 
~ N ( x ) ,  we obtain 

since 

f(,u) =f,(l). 

Formula (32) is the solution of the set of equations (23) or (24). 

5. Normal ordered expressions for s"', s"-, s"z 
From (6), (7) and (8) it follows that one can write 

s" = B'F(&) (33) 

i- = F(&B (34) 

iZ = f (lq (35) 

F ( x )  = [ S ( S +  1 ) - f ( x ) ( f ( x ) + 1 ) ] " 2  (1+x)-"2. 

where f ( x )  is defined in (5) and 

(36) 

According to the previous section, one can write 

SIc=  Bt  ( f bnB'"Bn) 
n =O 

s"-= ( 'f b,B'"B")B 
n=O 

00 

s"' = 1 C,B+"B" 
n =O 

(37) 

(39) 

where C, are the coefficients for the function f ( x )  and b, those for the function F ( x ) .  
In this section we will examine the expansions for S = 1 and S = 1. In each case we 

will call the appropriate coefficients b,, C, (to avoid additional indexing). 
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5.1. T h e c a s e S = ;  

In this case 
p = 2{$fi} - ; 

or 
1 --T n even 

f ( n ) =  { +; n odd. 

Thus, for integer n one can use 

f ( n )  = -+(--I) , ,  

which shows that we could use the expression 
$2 = -;(-I)* 

since both (40) and (41) have the same matrix elements. Using (32) now yields 

1 "  cn=- N!,=o ( p n)( - l )" -@(-$) ( - l )@.  

Equation (42) is a binomial expansion. Hence 

C, = (-2)"- ' /n !. 

The function F ( n )  for this case is (see (36)) 

I(;+ l)-[-$(--l)"][-;(-l)" + 11 
l + n  

Using ( - I )~"  = 1 for integer n one gets 

1+(-1)" 1'2 1 
F ( n i = (  2 ) ( l + n ) ' / 2 '  

For every integer n, 

1 + (-1)" 112 1 + (-1)" 
( 2 ) =  2 )  

hence 
1 1+(-1)" 

( l + n ) " *  2 
F ( n )  = 

This means we could use 

S+=B+ 1 l + ( - l p  
( 1  +fiy 2 

and 
1 l+(- l )$  s- = B. (1+fi)'/* 2 

The b,'s are, according to (32), 

(43) 

(44) 

(45) 

(47) 

(48) 

,L even 
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Expressions (4 l ) ,  (47) and (48) are the bosonisation transformations derived by 
Goldhirsch et a1 (1979). The general bosonisation scheme is therefore shown to reduce 
to the previously derived scheme for S = t .  

5.2. The case S = 1 

In this case 

S' = 3{$N}  - 1 

so that 

f ( n )  = 3{4n} - 1. 

A function equal to f(n) for integer n is 

exp(i$m) -exp[i$.ir(n + I)] 
exp(i$.rr) - 1 f ( n )  = 

The reader should note that f ( n )  is periodic with a period of 3,  so (52 )  is merely its 
representation in terms of Fourier components. In the case of general S one has a 
period of 2 s  + 1. 

Substitution of (52 )  in (32 )  yields 

which can be further simplified: 

Thus 
00 

S z =  1 c,B'"B". 
n =o 

The F function, in the case S = 1, is 

(53 )  

(54) 

where f(n) is given by (51) or (52) .  It is easy to check that this function is equal to 
another function F ( n )  on the set of non-negative integers: 

exp[i$.ir(l+ n )I + exp[i$.rr(l+ n 11 - 2 ( - J5) 
(56) (1 + n y  E ( n )  = 

Hence 

The value of C2 is zero, as can be seen from (53). This is shown in the next section to be 
part of a general property of our bosonisation, and its meaning is further discussed in 
0 9. 
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The sum E:=,, b,Z“ can be shown to converge for any complex 2. The way to show 
it is given by Goldhirsch et a1 (1979) for S = 4. Using equation ( 5 5 )  it is a trivial matter 
to prove the same for S = 1. Since such an expression appears in the coherent state 
representation (Klauder 1960) of the Bose operators, it is important to realise that our 
Bose expansion is convergent with infinite radius of convergence and it is not an 
expression of the square root appearing in (6) or (7), or the Holstein-Primakoff (1940) 
transformation. 

In conclusion we shall exhibit the first few terms of our expansion for S = 1, 

s” = &Bt + (1 - JZ)BtBtB + ;(JZ- 2)BfBtB ‘BB + . . . 
( 5 8 )  s” = -1 + B I B  - + B ~ B ~ B ? B B B  +. . . 

compared with the Holstein-Primakoff expansion 

s”’ = J2B - aJZB ‘B ‘B  - &J?B ( B  ‘B)(B t B )  - &JZB ‘ (B ‘ B)3)  + . . 
(59) 

S = = - I + B ~ B .  

The agreement is only in the first term for g+ and the first two terms of s”. The normal 
ordering (59) yields a 5 %  agreement on the second coefficient of 3’. 

As we show in the next section, the agreement with Holstein and Primakoff becomes 
better at higher S ,  as it should. 

6. The case of general S and 1/S expansion 

Equation (32) shows that if one wishes to know the b,’s up to a certain n, it suffices to 
know f ( p )  for p s n. Hence if one wishes to know the expansion coefficients up to bzs 
and CZS one can use functions E and that coincide with F and f for the integers 
0 s p G 2 s  (see § 5 for this notation). In this range of values of p one can use (see ( 5 ) )  

f (@I = P - s (60) 

since {@/(2S + 1)) = p / ( 2 S  + 1) in this range. F ( p )  can be calculated using (60) and 
(36): 

s ( s + 1 ) - ( p - s ) ( p - s + 1 )  1’2 

F+1  ) F ( p )  = ( 
which is equal to 

F ( p )  = (2s - p)’”. 

From (60) and (61 )  we learn that as far as the first (2s + 1 )  coefficients of the expansion 
are concerned, one could have written 

g’ = Bt(2S -N)’” 

This is exactly the Holstein-Primakoff transformation to which our expansion reduces 
when only the first (2s + 1) coefficients are considered. 

Actually, had we used only the first block or the Hmz0 subspace (see § 2) ,  all matrix 
elements of the type BtPBP with p > 2 s  + 1 would be zero, since the states in the first 
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block In) are restricted to 0 S n s 2s. Hence the Holstein-Primakoff transformation is 
equal to our own when only the first block is concerned. In order to stay in the first block 
one needs a projection operator in actual calculations. This projection is connected 
with what is known in the literature (Dyson 1956) as the kinematic interaction. 

Using (32) again for the case of general S one gets 

a special case of which is exhibited in 8 5 ,  namely S = 1. When S = i one has 2 s  + 1 = 2 
so no coefficient C, is zero. It is impossible to write down a general expression like (63) 
for the s" operator. However, we shall exhibit the first few b,, calculated using (32) and 
(61): 

bo = (2s)"' 

bl = ( 2 s  - 1)'"- (2S)'/2 

bZ = $[(2S)'/'- 2(2S - 1)"' + ( 2 s  - 2)'/'] 

b3=4[-(2S)1'2+3(2S-1)1/2-3(2S-2)1/2+(2S-3)1/2], 

etc. Expanding the b,'s in powers of l/S one obtains 

1 1  

1 I...) 

b 3 = 2 S  -- +...). ( 128S3 

The b,'s are therefore of order 1/S". This property can be proved in general as follows. 
For ,U < 2S, 

where the a,  are the appropriate expansion coefficients. Hence using (32), (62) and 
(66) 

The sum in parentheses is equal to 

Hence: 
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For m < n the derivative on the right-hand side of (67) is proportional to ex - 1, which 
goes to zero when x + 0. When n = m one can show from (67) that 

consequently 

1 - 
b, = d2San-+ higher orders in 1/S 

(2s)" 

for n s 2 S .  

expansion of S'. 
To conclude this section we present a closed formula for the coefficients C,, in the 

From ( 5 )  it follows that 

exp[i2mq/(2S + l)]. 
1 2s 

f ( s ) =  - c 
m = l  1-exp[-i27~m/(2S+ I)]  

This formula is just the Fourier representation of f ( x ) .  Substituting it into (32) yields 

f (;) (-l),,-@ exp[ i27~m~/(2S + 111 (70) 
1 2s 1 

n !  , = I  1 -exp[-i27~m/(2S+ l)] & = o  
c =- -  c 
from which it follows that 

1 2s 

n !  ,,,=I 
cn = -- 1 exp[i2.rrm/(2~ + l ) ] (exp[i27~m/(2~ + 111- 1ln-l. 

Since C,, is real, by its definition, we take the real part of (71) and arrive at 

One can easily check that (72) contains S = $, S = 1 as special cases. 

7. Quantum spin models: the Hilbert space 

In this section the structure of the Hilbert space for quantum spin models is analysed. 
Assume that we have a d-dimensional lattice with three spin operators S: ,  S ; ,  S :  

attached to each lattice point i. We define a Hamiltonian as a functional 
H[{S:, S ; ,  S : } ]  of the spin operators. Aassuming the lattice has K sites the relevant 
Hilbert space is ( 2 s  + 1)" dimensional, i.e. a direct product of N, ( 2 s  + 1)-dimensional 
spaces. 

Let us analyse the bosonised Hamiltonian, in our notation H[{$:, $;$:}I. We 
choose a non-negative integer m, for each lattice site i. The space spanned by the 
product U'") = 0, U,, (see (12)) is ( 2 s  + l)N dimensional, and since we have proven 
that the Hilbert spaces spanned by each U,,, namely Hmz, are invariant under the action 
of the spin operators s":, s":, it follows that the space spanned by U"i' is closed under 
the operation of all spin operators on the lattice. 

Thus the infinite matrix representing the Hamiltonian in the Bose space can be 
shown to be made of blocks of size ( 2 s  + 1)" x ( 2 s  + 1)"". Since as shown in Q 2, the 
action of the bosonised spin operators in each block is isomorphic to the action of the 
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usual spin operators in spin space, it follows that the structure of the bosonised 
Hamiltonian is one of repeating blocks, each block being equal to the matrix represen- 
tation of the spin Hamiltonian in the spin space provided one uses the correspondence 
of basis states mentioned in § 2.  Each choice of {mi} fixes a block and thus {mi} can be 
taken as the index of the block. The union of all U"i' clearly spans the whole Bose 
space. 

This structure is exhibited in figure (2). It is the same structure as was found for the 
case S = t (see Goldhirsch et a1 (1979) 8 111). 

Figure 2. Structure of the bosonised spin Hamiltonian. Each block is equal to the original 
Hamiltonian matrix in spin space. 

This structure of the bosonised spin Hamiltonian contains a new invariant, which we 
shall call the block invariant. To see it, examine the state Ini). n, can always be written as 

n, = (2s + l )m,  + r, 0 s r, < 2s + 1. (73) 

According to (5) and ( 8 ) ,  in,) is an eigenstate of s": with eigenvalues r, - S.  Thus In,) is an 
eigenstate of # - s": with eigenvalue (2s + l )m,  i- S.  The number m, is typical of a 
certain block and does not change in it, from state to state. 

It follows that fi, - s": is an invariant inside each block and as a result it commutes 
with H. Clearly XZ(fi,--,$;) is an invariant in each block also. This invariant is 
connected with the Bloch sum rule; this is proved in the next paragraph. 

8. Quantum spin systems at finite temperature and the Bloch sum rule 

Because of the structure of H in the Bose space (see figure 2) the partition function 
corresponding to H at inverse temperature p can be written as 

Tre-OH= 1 Tre-OH. 
blocks 

(74) 

This is easily seen in the diagonal representation of H (see figures 3 and 4). Let f iAbe  
the (2s + l ) N  x (2s  + l)N matrix representing the Hamiltonian in spin space. Tr e-OH is 
the partition function of the spin system and will be denoted as Z,,,,. The sum in (74) is 
thus an infinite sum over the same object, Z,,,,, and hence it is infinite. To remedy this 
point, one can use the fact that there is a block-invariant W=Xi(# -9;) which 
commutes with the Hamiltonian. We now calculate Tr e-OH-+LW From [H, W ]  = 0 it 
follows that 

(75) T~ e-OH-+w = T~ e-@H e-ww 
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Figure 3. Diagonal representation of H in the Bose space. 

Figure 4. Diagonal representation of e-PH in the Bose space. 

Equation (75) can be rewritten as 

In each block W is a c number whose value is X i  [(2S + l )mi  + SI, where the set {mi} 
defines the block (see (73) and Q 7). In a given block one can write, instead of W, 

( 2 S + I ) C m i + S N .  (77) 
i 

Hence 

of m, 

Since the mi’s range over all integers from zero to infinity, one gets 

where 2 denotes the left-hand side of (78). As a result, the true partition function of the 
spin system is proportional to the partition function of the effective Hamiltonians G 
defines as 

(80) 

and H 
G = H +(.I@) W 

and the proportionality constant is independent of temperature. Thus 
describe the same physics. 
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The limit CL +CO projects out the first block (all mi = 0) only, and there one can work 
with any of the known representations which are valid in this limit. The average (W) is 
given by 

(81) 
Tr( W e-PH-CLW ) 

( w> = T~ e-PH-&W 

from which one can easily show that 

Tr  W e-CLw 
( W ) =  Tre-&w ' 

Hence 
[(2S + 1)m + S ]  exp{-p[(2S + 1)m +SI} 

exp{-,u[(2S + 1)m +SI} ( W ) = K  7 

which leads to 

or 

The left-hand side of equation (85) is the average number of bosons (or magnons if the 
two are identified) minus the magnetisation. This quantity is shown in (85) to be a 
constant independent of temperature. If E.L +CO,  so that one stays in the first block 
alone, one gets 

(lq - Sf) = S (86) 

which is the usual formulation of Bloch's sum rule (Keffer 1966). (In this reference the 
average is of (fi, +Sf) since they choose S' = S as the zero boson states. By making the 
transformation s"' + $-, s'- + -F, s" + -$', we can transform to this choice.) Equation 
(85) is thus a rigorous proof and a generalisation of Bloch's sum rule. 

9. Remarks on path integral representation and the critical behaviour of quantum 
spin systems 

Goldhirsch et a1 (1979) showed how the boson representation can be used to write the 
partition function of a quantum spin system in terms of coherent states. The same can 
be done here. To get the effective classical Hamiltonian one has just to write H in a 
normal ordered form, substitute A T r  for B: and A: for Bi ( r  is the index denoting the 
'additional dimension'; see Goldhirsch er a1 (1979)) and add to this the part coming 
from the norm of the coherent states. Then, using the analysis of Goldhirsch et a1 
(1979), one can show that at zero temperature the quantum spin system in d dimensions 
behaves like an equivalent classical system in ( d  + 1) dimensions, but at finite tempera- 
tures a cross-over back to the original dimension must occur. However, there is an 
important difference between the case S = 4 and any other S.  As noted in 9 6, the first 
( 2 s  + 1) terms of the Bose expansion are identical to the Holstein-Primakoff expres- 
sion, thus leading to a magnon-magnon interaction term U4B:,B:$ksf?k4 which does 
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not vanish in the limit of zero momenta. This problem can be solved by going to a 
non-Hermitian Hamiltonian (Dyson 1956, Maleev 1958). It is interesting to note the 
role of the term containing p in this context. From (63) it follows that 

2' = -S -t B'B + C2S+1Bt2Sc1B2S+1 + higher-order terms. 

- s" = S - C Z S + I B ~ ~ ~ + ' B ~ ~ + '  + higher-order terms. 

(87) 

(88) 

Hence: 

Thus the lowest-order term in the Bose expansion of the weight function W is of order 
Bt2S+1B2S+1. p does not appear in any lower term. But, as shown by Goldhirsch et a1 
(1979), it is p that enables one to have a term of the type T - T,, since all other terms are 
proportional to p (  = l /T) .  Thus the 'usual' Landau-Ginzburg free energy can be 
obtained in the sense of renormalisation group recursion relations only after (2s + 1) 
iterations. In other words, the strength of the Holstein-Primakoff interaction is such 
that one needs to go to the (2s + 1)th order in perturbation theory at least in order to 
obtain a (presumably) small magnon-magnon interaction. The non-unitary trans- 
formation of Maleev (1958) which leads to the Dyson-Maleev-type Hamiltonian is 
probably equivalent to a strong renormalisation of the magnons. Consequently the 
intuitive approach of § VI11 in Goldhirsch et a1 (1979) does not apply to general spin, 
yet the formal approach of section V of the same reference can be used easily in the 
general case also, yielding the same results. Consequently, the phase transition in a 
quantum spin system can be regarded as a generalised Bose condensation in which 
W = Z (& - Sf) is the conserved quantity rather than the total number of particles 
Z l f i z  (Goldhirsch and Yakhot 1979). 

The formalism developed above can be applied in a multitude of cases where the 
fourth- and higher-order interactions of magnons are necessary, e.g. ferromagnetic 
relaxation theory, renormalisation of magnons, etc. 
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